Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
1.
J Electromyogr Kinesiol ; 75: 102872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458102

RESUMO

The number of motor units included in calculations of mean firing rates varies widely in the literature. It is unknown how the number of decomposed motor units included in the calculation of firing rate per participant compares to the total number of active motor units in the muscle, and if this is different for males and females. Bootstrapped distributions and confidence intervals (CI) of mean motor unit firing rates decomposed from the tibialis anterior were used to represent the total number of active motor units for individual participants in trials from 20 to 100 % of maximal voluntary contraction. Bootstrapped distributions of mean firing rates were constructed using different numbers of motor units, from one to the maximum number for each participant, and compared to the CIs. A probability measure for each number of motor units involved in firing rate was calculated and then averaged across all individuals. Motor unit numbers required for similar levels of probability increased as contraction intensity increased (p < 0.001). Increased levels of probability also required higher numbers of motor units (p < 0.001). There was no effect of sex (p ≥ 0.97) for any comparison. This methodology should be repeated in other muscles, and aged populations.


Assuntos
Contração Muscular , Músculo Esquelético , Masculino , Feminino , Humanos , Idoso , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia , Contração Isométrica/fisiologia
2.
J Physiol ; 602(8): 1759-1774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502567

RESUMO

5-HT2 receptors on motoneurones play a critical role in facilitating persistent inward currents (PICs). Although facilitation of PICs can enhance self-sustained firing after periods of excitation, the relationship between 5-HT2 receptor activity and self-sustained firing in human motor units (MUs) has not been resolved. MU activity was assessed from the tibialis anterior of 10 healthy adults (24.9 ± 2.8 years) during two contraction protocols. Both protocols featured steady-state isometric contractions with constant descending drive to the motoneurone pool. However, one protocol also included an additional phase of superimposed descending drive. Adding and then removing descending drive in the middle of steady-state contractions altered MU firing behaviour across the motor pool, where newly recruited units in the superimposed phase were unable to switch off (P = 0.0002), and units recruited prior to additional descending drive reduced their discharge rates (P < 0.0001, difference in estimated marginal means (∆) = 2.24 pulses/s). The 5-HT2 receptor antagonist, cyproheptadine, was then administered to determine whether changes in MU firing were mediated by serotonergic mechanisms. 5-HT2 receptor antagonism caused reductions in MU discharge rate (P < 0.001, ∆ = 1.65 pulses/s), recruitment threshold (P = 0.00112, ∆ = 1.09% maximal voluntary contraction) and self-sustained firing duration (P < 0.0001, ∆ = 1.77s) after the additional descending drive was removed in the middle of the steady-state contraction. These findings indicate that serotonergic neuromodulation plays a key role in facilitating discharge and self-sustained firing of human motoneurones, where adaptive changes in MU recruitment must occur to meet the demands of the contraction. KEY POINTS: Animal and cellular preparations indicate that somato-dendritic 5-HT2 receptors regulate the intrinsic excitability of motoneurones. 5-HT2 receptor antagonism reduces estimates of persistent inward currents in motoneurones, which contribute to self-sustained firing when synaptic inputs are reduced or removed. This human study employed a contraction task that slowly increased (and then removed) the additional descending drive in the middle of a steady-state contraction where marked self-sustained firing occurred when the descending drive was removed. 5-HT2 receptor antagonism caused widespread reductions in motor unit (MU) discharge rates during contractions, which was accompanied by reduced recruitment threshold and attenuation of self-sustained firing duration after the removal of the additional descending drive to motoneurones. These findings support the role that serotonergic neuromodulation is a key facilitator of MU discharge and self-sustained firing of human motoneurones, where adaptative changes in MU recruitment must occur to meet the demands of the contraction.


Assuntos
Receptores 5-HT2 de Serotonina , Serotonina , Adulto , Humanos , Serotonina/farmacologia , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Eletromiografia/métodos , Contração Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia
3.
J Neural Eng ; 21(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38176027

RESUMO

Objective.Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activities of residual muscles are similar to that of intact muscles. This study sought to understand potential changes to motor unit (MU) properties after limb amputation.Approach.Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intacttibialis anterior(TA) andgastrocnemius(GA) muscles were recorded while subjects traced profiles targeting up to 20% and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of MU spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman's size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles.Main results.The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates.Significance.We showed peripheral neuromuscular damage also leads to spinal-level functional reorganizations. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses.


Assuntos
Membros Artificiais , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Amputação Cirúrgica , Recrutamento Neurofisiológico/fisiologia , Contração Isométrica
4.
PLoS Comput Biol ; 19(12): e1011606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060619

RESUMO

The computational simulation of human voluntary muscle contraction is possible with EMG-driven Hill-type models of whole muscles. Despite impactful applications in numerous fields, the neuromechanical information and the physiological accuracy such models provide remain limited because of multiscale simplifications that limit comprehensive description of muscle internal dynamics during contraction. We addressed this limitation by developing a novel motoneuron-driven neuromuscular model, that describes the force-generating dynamics of a population of individual motor units, each of which was described with a Hill-type actuator and controlled by a dedicated experimentally derived motoneuronal control. In forward simulation of human voluntary muscle contraction, the model transforms a vector of motoneuron spike trains decoded from high-density EMG signals into a vector of motor unit forces that sum into the predicted whole muscle force. The motoneuronal control provides comprehensive and separate descriptions of the dynamics of motor unit recruitment and discharge and decodes the subject's intention. The neuromuscular model is subject-specific, muscle-specific, includes an advanced and physiological description of motor unit activation dynamics, and is validated against an experimental muscle force. Accurate force predictions were obtained when the vector of experimental neural controls was representative of the discharge activity of the complete motor unit pool. This was achieved with large and dense grids of EMG electrodes during medium-force contractions or with computational methods that physiologically estimate the discharge activity of the motor units that were not identified experimentally. This neuromuscular model advances the state-of-the-art of neuromuscular modelling, bringing together the fields of motor control and musculoskeletal modelling, and finding applications in neuromuscular control and human-machine interfacing research.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Simulação por Computador , Recrutamento Neurofisiológico/fisiologia , Eletromiografia
5.
J Neurophysiol ; 130(5): 1321-1333, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877159

RESUMO

Aging is associated with neuromuscular system changes that may have implications for the recruitment and firing behaviors of motor units (MUs). In previous studies, we observed that young adults recruit subpopulations of triceps surae MUs during tasks that involved leaning in five directions: common units that were active during different leaning directions and unique units that were active in only one leaning direction. Furthermore, the MU subpopulation firing behaviors [average firing rate (AFR), coefficient of variation (CoVISI), and intermittent firing] modulated with leaning direction. The purpose of this study was to examine whether older adults exhibited this regional recruitment of MUs and firing behaviors. Seventeen older adults (aged 74.8 ± 5.3 yr) stood on a force platform and maintained their center of pressure leaning in five directions. High-density surface electromyography recordings from the triceps surae were decomposed into single MU action potentials. A MU tracking analysis identified groups of MUs as being common or unique across the leaning directions. Although leaning in different directions did not affect the AFR and CoVISI of common units (P > 0.05), the unique units responded to the leaning directions by increasing AFR and CoVISI, albeit modestly (F = 18.51, P < 0.001). The unique units increased their intermittency with forward leaning (F = 9.22, P = 0.003). The mediolateral barycenter positions of MU activity in both subpopulations were found in similar locations for all leaning directions (P > 0.05). These neuromuscular changes may contribute to the reduced balance performance seen in older adults.NEW & NOTEWORTHY In this study, we observed differences in motor unit recruitment and firing behaviors of distinct subpopulations of motor units in the older adult triceps surae muscle from those observed in the young adult. Our results suggest that the older adult central nervous system may partially lose the ability to regionally recruit and differentially control motor units. This finding may be an underlying cause of balance difficulties in older adults during directionally challenging leaning tasks.


Assuntos
Contração Muscular , Músculo Esquelético , Adulto Jovem , Humanos , Idoso , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Perna (Membro) , Equilíbrio Postural , Recrutamento Neurofisiológico/fisiologia , Contração Isométrica
6.
Exp Brain Res ; 241(10): 2547-2560, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707570

RESUMO

Approaches for validating motor unit firing times following surface electromyographic (EMG) signal decomposition with the precision decomposition III (PDIII) algorithm have not been agreed upon. Two approaches have been common: (1) "reconstruct-and-test" and (2) spike-triggered averaging (STA). We sought to compare motor unit results following the application of these approaches. Surface EMG signals were recorded from the vastus lateralis of 13 young males performing trapezoidal, isometric knee extensions at 50% and 80% of maximum voluntary contraction (MVC) force. The PDIII algorithm was used to quantify motor unit firing rates. Motor units were excluded using eight combinations of the reconstruct-and-test approach with accuracy thresholds of 0, 90, 91, and 92% with and without STA. The mean firing rate versus recruitment threshold relationship was minimally affected by STA. At 80% MVC, slopes acquired at the 0% accuracy threshold were significantly greater (i.e., less negative) than when 91% (p = .010) and 92% (p = .030) accuracy thresholds were applied. The application of STA has minimal influence on surface EMG signal decomposition results. Stringent reconstruct-and-test accuracy thresholds influence motor unit-derived relationships at high forces, perhaps explained through the increased presence of large motor unit action potentials. Investigators using the PDIII algorithm can expect negligible changes in motor unit-derived linear regression relationships with the application of secondary validation procedures.


Assuntos
Neurônios Motores , Músculo Quadríceps , Masculino , Humanos , Eletromiografia/métodos , Neurônios Motores/fisiologia , Músculo Quadríceps/fisiologia , Contração Muscular/fisiologia , Contração Isométrica , Recrutamento Neurofisiológico/fisiologia , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia
7.
Acta Physiol (Oxf) ; 239(1): e14024, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551144

RESUMO

AIMS: Motor unit recruitment and firing rate patterns of the vastus lateralis (VL) have not been compared between sexes during moderate- and high-intensity contraction intensities. Additionally, the influence of fiber composition on potential sex-related differences remains unquantified. METHODS: Eleven males and 11 females performed 40% and 70% maximal voluntary contractions (MVCs). Surface electromyographic (EMG) signals recorded from the VL were decomposed. Recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMP ), initial firing rates (IFRs), mean firing rates (MFRs), and normalized EMG amplitude (N-EMGRMS ) at steady torque were analyzed. Y-intercepts and slopes were calculated for MUAPAMP , IFR, and MFR versus RT relationships. Type I myosin heavy chain isoform (MHC) was determined with muscle biopsies. RESULTS: There were no sex-related differences in MU characteristics at 40% MVC. At 70% MVC, males exhibited greater slopes (p = 0.002) for the MUAPAMP , whereas females displayed greater slopes (p = 0.001-0.007) for the IFR and MFR versus RT relationships. N-EMGRMS at 70% MVC was greater for females (p < 0.001). Type I %MHC was greater for females (p = 0.006), and was correlated (p = 0.018-0.031) with the slopes for the MUAPAMP , IFR, and MFR versus RT relationships at 70% MVC (r = -0.599-0.585). CONCLUSION: Both sexes exhibited an inverse relationship between MU firing rates and recruitment thresholds. However, the sex-related differences in MU recruitment and firing rate patterns and N-EMGRMS at 70% MVC were likely due to greater type I% MHC and smaller twitch forces of the higher threshold MUs for the females. Evidence is provided that muscle fiber composition may explain divergent MU behavior between sexes.


Assuntos
Músculo Esquelético , Cadeias Pesadas de Miosina , Masculino , Feminino , Humanos , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Fibras Musculares Esqueléticas , Potenciais de Ação/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia
8.
J Appl Physiol (1985) ; 135(3): 519-526, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439237

RESUMO

Despite the perceived importance of antagonist muscle activity, it is unknown if motor unit (MU) behavior at recruitment differs when a muscle acts as an antagonist versus agonist. Fourteen healthy participants performed ramped, isometric elbow flexor or extensor contractions to 50% or 100% maximal voluntary contraction (MVC) torque. Surface and fine-wire intramuscular electromyographic (EMG) recordings were sampled from biceps and triceps brachii. During agonist contractions, low-threshold MUs (recruited at <10% MVC torque) were sampled in all participants, with a total of 107 and 90 for biceps and triceps brachii, respectively. For ramped MVCs, antagonist surface EMG coactivation (% amplitude during agonist MVC) was 8.3 ± 6.6% for biceps and 15.2 ± 7.3% for triceps brachii. However, antagonist single MU activity was recorded from only four participants, with only one of these individuals having antagonist MUs recorded from both muscles. All antagonist MUs were successfully detected during agonist contractions, but many (∼40%) had a recruitment threshold >10% MVC torque. For MUs recorded during both agonist and antagonist contractions, discharge rate at recruitment was seemingly lower for antagonist than agonist contractions. Coexistence of typical levels of surface EMG-derived coactivation with scant antagonist MU recordings suggests that coactivation in these muscles is primarily the result of cross talk. Based on the limited antagonist MU data detected, MUs recruited early during an agonist contraction are not necessarily among those first recruited during an antagonist contraction. These findings highlight the possibility of a modification of orderly recruitment when a motoneuron pool is acting as an antagonist.NEW & NOTEWORTHY Modest levels of coactivation are widely considered essential for appropriate motor control; however, minimal attention has been given to recruitment patterns of motor units (MUs) from antagonist muscles. Despite the successful recording of many low-threshold MUs during agonist contractions, we recorded no antagonist MUs in most participants. Of the units recorded, only ∼60% matched those recruited at <10% of maximal torque when the muscle acted as an agonist, which suggests a modified recruitment order for antagonist MUs.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Eletromiografia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Braço , Cotovelo , Contração Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia
9.
J Neurophysiol ; 129(5): 1094-1113, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988205

RESUMO

Understanding how motor plans are transformed into appropriate patterns of muscle activity is a central question in motor control. Although muscle activity during the delay period has not been reported using conventional electromyographic (EMG) approaches, we isolated motor unit activity using a high-density surface EMG signal from the anterior deltoid muscle to test whether heterogeneity in motor units could reveal early preparatory activity. Consistent with our previous work (Rungta SP, Basu D, Sendhilnathan N, Murthy A. J Neurophysiol 126: 451-463, 2021), we observed early selective recruitment of small amplitude size motor units during the delay period for hand movements similar to the observed early recruitment of small-amplitude motor units in neck muscles of nonhuman primates performing delayed saccade tasks. This early activity was spatially specific and increased with time and resembled an accumulation to threshold model that correlated with movement onset time. Such early recruitment of ramping motor units was observed at the single trial level as well. In contrast, no such recruitment of large amplitude size motor units, called nonrampers, was observed during the delay period. Instead, nonrampers became spatially specific and predicted movement onset time after the delay period. Interestingly, spatially specific delay period activity was only observed for hand movements but was absent for isometric force-driven cursor movements. Nonetheless, muscle activity was correlated with the time it took to initiate movements in both task conditions for nonrampers. Overall, our results reveal a novel heterogeneity in the EMG activity that allows the expression of early motor preparation via small amplitude size motor units that are differentially activated during movement initiation.NEW & NOTEWORTHY We studied the spatial and temporal aspects of response preparation in the anterior deltoid muscle using high-density surface EMG. Our results show that early spatially specific ramping activity that predicted reaction times could be accessed from muscle activity but was absent during isometric force-driven cursor movements. Such ramping activity could be quantified using an accumulator framework across trials, as well as within single trials, but was not observed in isometric reach tasks involving cursor movements.


Assuntos
Músculo Esquelético , Ombro , Animais , Eletromiografia , Músculo Esquelético/fisiologia , Movimento/fisiologia , Extremidade Superior , Contração Isométrica/fisiologia , Recrutamento Neurofisiológico/fisiologia
10.
Muscle Nerve ; 68(2): 149-156, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36960740

RESUMO

INTRODUCTION/AIMS: In amyotrophic lateral sclerosis (ALS), the impact of motor neuron dysfunction on the motor unit (MU) firing pattern remains to be elucidated. The aim of this study was to clarify the characteristics of the MU firing rate and its association with clinical factors in ALS patients using high-density surface electromyography (HDSEMG) and MU decomposition analysis. METHODS: Nineteen ALS patients and 20 controls prospectively underwent HDSEMG recording of the vastus lateralis muscle during ramp-up (30% of maximum voluntary contraction) and sustained (10% of maximal voluntary contraction for 60 seconds) contractions on performing isometric knee extension. After decomposition analysis, instantaneous firing rates (IFRs) of individually identified MUs were calculated. Comparison of IFRs and clinical variables between ALS patients and controls and analysis of the correlation between individual mean IFR and clinical variables in ALS patients were performed. RESULTS: The number of identified MUs was lower in ALS patients than in controls (P = .017). Mean IFRs of MUs (i.e., mean MU firing rates) were higher in ALS patients than in controls at some force levels on ramp-up contraction (P < .05) and at 50 to 60 seconds during sustained contraction (9.1 [ALS] vs 8.3 [controls] pulses per second; P = .036). There was no correlation between the clinical parameters and mean IFR of each patient. DISCUSSION: ALS patients had a higher MU firing rate during muscle contraction at a low force level. Noninvasive assessment of the MU firing rate by HDSEMG can detect a motor neuronal hyperexcitable state in ALS patients.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Eletromiografia , Esclerose Amiotrófica Lateral/diagnóstico , Músculo Esquelético , Recrutamento Neurofisiológico/fisiologia , Contração Muscular/fisiologia , Contração Isométrica/fisiologia
11.
J Physiol ; 601(6): 1121-1138, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790076

RESUMO

Serotonergic neuromodulation contributes to enhanced voluntary muscle activation. However, it is not known how the likely motoneurone receptor candidate (5-HT2 ) influences the firing rate and activation threshold of motor units (MUs) in humans. The purpose of this study was to determine whether 5-HT2 receptor activity contributes to human MU behaviour during voluntary ramped contractions of differing intensity. High-density surface EMG (HDsEMG) of the tibialis anterior was assessed during ramped isometric dorsiflexions at 10, 30, 50 and 70% of maximal voluntary contraction (MVC). MU characteristics were successfully extracted from HDsEMG of 11 young adults (four female) pre- and post-ingestion of 8 mg cyproheptadine or a placebo. Antagonism of 5-HT2 receptors caused a reduction in MU discharge rate during steady-state muscle activation that was independent of the level of contraction intensity [P < 0.001; estimated mean difference (∆) = 1.06 pulses/s], in addition to an increase in MU derecruitment threshold (P < 0.013, ∆ = 1.23% MVC), without a change in force during MVC (P = 0.652). A reduction in estimates of persistent inward current amplitude was observed at 10% MVC (P < 0.001, ∆ = 0.99 Hz) and 30% MVC (P = 0.003, ∆ = 0.75 Hz) that aligned with 5-HT changes in MU firing behaviour attributable to 5-HT2 antagonism. Overall, these findings indicate that 5-HT2 receptor activity has a role in regulating the discharge rate in populations of spinal motoneurones when performing voluntary contractions. This study provides evidence of a direct link between MU discharge properties, persistent inward current activity and 5-HT2 receptor activity in humans. KEY POINTS: Activation of 5-HT receptors on the soma and dendrites of motoneurones regulates their excitability. Previous work using chlorpromazine and cyproheptadine has demonstrated that the 5-HT2 receptor regulates motoneurone activity in humans with chronic spinal cord injury and non-injured control subjects. It is not known how the 5-HT2 receptor directly influences motor unit (MU) discharge and MU recruitment in larger populations of human motoneurones during voluntary contractions of differing intensity. Despite the absence of change in force during maximal voluntary dorsiflexions, 5-HT2 receptor antagonism caused a reduction in MU discharge rate during submaximal steady-state muscle contraction, in addition to an increase in MU derecruitment threshold, irrespective of the submaximal contraction intensity. Reductions in estimates of persistent inward currents after 5-HT2 receptor antagonism support the viewpoint that the 5-HT2 receptor plays a crucial role in regulating motor activity, whereby a persistent inward current-based mechanism is involved in regulating the excitability of human motoneurones.


Assuntos
Receptores 5-HT2 de Serotonina , Serotonina , Adulto Jovem , Humanos , Feminino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Recrutamento Neurofisiológico/fisiologia
12.
Exerc Sport Sci Rev ; 51(1): 34-42, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36123735

RESUMO

The rate at which an individual can develop force during rapid voluntary contractions can be influenced by both the neural drive to a muscle and its intrinsic musculotendinous properties. We hypothesize that the maximal rate of force development across human individuals is mainly attributable to the rate of motor unit recruitment.


Assuntos
Neurônios Motores , Contração Muscular , Humanos , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia , Contração Isométrica/fisiologia
13.
Biomech Model Mechanobiol ; 22(2): 593-610, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36572787

RESUMO

Functional heterogeneity is a skeletal muscle's ability to generate diverse force vectors through localised motor unit (MU) recruitment. Existing 3D macroscopic continuum-mechanical finite element (FE) muscle models neglect MU anatomy and recruit muscle volume simultaneously, making them unsuitable for studying functional heterogeneity. Here, we develop a method to incorporate MU anatomy and information in 3D models. Virtual fibres in the muscle are grouped into MUs via a novel "virtual innervation" technique, which can control the units' size, shape, position, and overlap. The discrete MU anatomy is then mapped to the FE mesh via statistical averaging, resulting in a volumetric MU distribution. Mesh dependency is investigated using a 2D idealised model and revealed that the amount of MU overlap is inversely proportional to mesh dependency. Simultaneous recruitment of a MU's volume implies that action potentials (AP) propagate instantaneously. A 3D idealised model is used to verify this assumption, revealing that neglecting AP propagation results in a slightly less-steady force, advanced in time by approximately 20 ms, at the tendons. Lastly, the method is applied to a 3D, anatomically realistic model of the masticatory system to demonstrate the functional heterogeneity of masseter muscles in producing bite force. We found that the MU anatomy significantly affected bite force direction compared to bite force magnitude. MU position was much more efficacious in bringing about bite force changes than MU overlap. These results highlight the relevance of MU anatomy to muscle function and joint force, particularly for muscles with complex neuromuscular architecture.


Assuntos
Neurônios Motores , Contração Muscular , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculos , Potenciais de Ação , Recrutamento Neurofisiológico/fisiologia , Músculo Esquelético/fisiologia
14.
J Neurophysiol ; 129(1): 235-246, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515411

RESUMO

Changes in the discharge characteristics of motor units as well as in the maximum force-producing capacity of the muscle are observed following training, aging, and fatiguability. The ability to measure the adaptations in the neuromuscular properties underlying these changes experimentally, however, is limited. In this study we used a computational model to systematically investigate the effects of various neural and muscular adaptations on motor unit recruitment thresholds, average motor unit discharge rates in submaximal contractions, and maximum force. The primary focus was to identify candidate adaptations that can explain experimentally observed changes in motor unit discharge characteristics after 4 wk of strength training (Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D. J Physiol 597: 1873-1887, 2019). The simulation results indicated that multiple combinations of adaptations, likely involving an increase in maximum discharge rate across motor units, may occur after such training. On a more general level, we found that the magnitude of the adaptations scales linearly with the change in recruitment thresholds, discharge rates, and maximum force. In addition, the combination of multiple adaptations can be predicted as the linear sum of their individual effects. Together, this implies that the outcomes of the simulations can be generalized to predict the effect of any combination of neural and muscular adaptations. In this way, the study provides a tool for estimating potential underlying adaptations in neural and muscular properties to explain any change in commonly used measures of rate coding, recruitment, and maximum force.NEW & NOTEWORTHY Our ability to measure adaptations in neuromuscular properties in vivo is limited. Using a computational model, we quantify the effect of multiple neuromuscular adaptations on common measures of motor unit recruitment, rate coding, and force-producing capacity. Scaling and combining adaptations had a near-linear effect on these measures, indicating that the results can explain and predict neuromuscular adaptations in a wide range of conditions, including, but not limited to, strength training.


Assuntos
Contração Muscular , Músculo Esquelético , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Adaptação Fisiológica/fisiologia , Contração Isométrica/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia
15.
Muscle Nerve ; 66(6): 750-756, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214178

RESUMO

INTRODUCTION/AIMS: A prevailing concept of motor unit (MU) recruitment used for calculating recruitment ratio (RR) suggests a progressive linear increase in firing rate (FR). The objective of this study is to assess its validity. METHODS: Concentric needle electromyography (EMG) recordings were made in normal muscle and abnormal muscle of patients with neurogenic findings. Signals recorded at low force were visually decomposed to study MU FR at onset, recruitment of a second MU, and recruitment of more MUs with further increases in force. RESULTS: We observed one to six MUs discharging at a rate < 15 Hz in normal muscles at low force. The MU FR was 5-8 Hz at onset. With increasing force, FR increased by 3-5 Hz and then idled at <15 Hz while other MUs were recruited. The recruitment frequency (RF) and RR had low sensitivity and were abnormal mainly in moderately to severely weak muscles. DISCUSSION: Our data are consistent with FR analysis results described by other investigators. It does not support a progressive linear increase in MU FR with recruitment. A revised model for MU recruitment at low effort during gradual increase in force is presented. On subjective assessment, the FR of the fastest firing MU can help detect MU loss in neurogenic processes.


Assuntos
Contração Muscular , Recrutamento Neurofisiológico , Humanos , Recrutamento Neurofisiológico/fisiologia , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Eletromiografia , Músculos , Contração Isométrica , Músculo Esquelético/fisiologia
16.
J Appl Physiol (1985) ; 133(5): 1136-1148, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227169

RESUMO

The integration of electromyography (EMG) and ultrasound imaging has provided important information about the mechanisms of muscle activation and contraction. Unfortunately, conventional bipolar EMG does not allow an accurate assessment of the interplay between the neural drive received by muscles, changes in fascicle length and torque. We aimed to assess the relationship between modulations in tibialis anterior muscle (TA) motor unit (MU) discharge, fascicle length, and dorsiflexion torque using ultrasound-transparent high-density EMG electrodes. EMG and ultrasound images were recorded simultaneously from TA using a 32-electrode silicon matrix while performing isometric dorsiflexion contractions at two ankle joint positions (0° or 30° plantar flexion) and torques (20% or 40% of maximum). EMG signals were decomposed into MUs and changes in fascicle length were assessed with a fascicle-tracking algorithm. MU firings were converted into a cumulative spike train (CST) that was cross-correlated with torque (CST-torque) and fascicle length (CST-length). High cross-correlations were found for CST-length (0.60, range: 0.31-0.85) and CST-torque (0.71, range: 0.31-0.88). Cross-correlation delays revealed that the delay between CST-fascicle length (∼75 ms) was smaller than CST-torque (∼150 ms, P < 0.001). These delays affected MU recruitment and de-recruitment thresholds since the fascicle length at which MUs were recruited and de-recruited was similar but MU recruitment-de-recruitment torque varied. This study demonstrates that changes in TA fascicle length are related to modulations in MU firing and dorsiflexion torque. These relationships allow assessment of the interplay between neural drive, muscle contraction and torque, enabling the time required to convert neural activity into movement to be quantified.NEW & NOTEWORTHY By employing ultrasound-transparent high-density EMG electrodes, we show that modulations in tibialis anterior muscle motor unit discharge rate were related to both changes in fascicle length and resultant torque. These relationships permitted the quantification of the relative delays between fluctuations in neural drive, muscle contraction, and transfer of torque via the tendon during sustained isometric dorsiflexion contractions, providing information on the conversion of neural activity into muscle force during a contraction.


Assuntos
Contração Isométrica , Alta do Paciente , Humanos , Contração Isométrica/fisiologia , Recrutamento Neurofisiológico/fisiologia , Contração Muscular/fisiologia , Torque , Eletromiografia , Músculo Esquelético/fisiologia
17.
J Neural Eng ; 19(4)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35926440

RESUMO

Objective.This study aims to characterize the motor units (MUs) distribution and recruitment pattern in the spastic and non-spastic bilateral biceps brachii muscles (BBMs) of chronic stroke survivors.Approach.High-density surface electromyography (HD-sEMG) signals were collected from both spastic and non-spastic BBMs of fourteen chronic stroke subjects during isometric elbow flexion at 10%, 30%, 50% and 100% maximal voluntary contractions (MVCs). By combining HD-sEMG decomposition and bioelectrical source imaging, MU innervation zones (MUIZs) of the decomposed MUs were first localized in the 3D space of spastic and non-spastic BBMs. The MU depth defined as the distance between the localized MUIZ and its normal projection on the skin surface was then normalized to the arm radius of each subject and averaged at given contraction level. The averaged MU depth at different contraction levels on a specific arm side (intra-side) and the bilateral depths under a specific contraction level (inter-side) were compared.Main results.The average depth of decomposed MUs increased with the contraction force and significant differences observed between 10% vs 50% (p< 0.0001), 10% vs 100% (p< 0.0001) and 30% vs 100% MVC (p= 0.0017) on the non-spastic side, indicating that larger MUs with higher recruitment threshold locate in deeper muscle regions. In contrast, no force-related difference in MU depth was observed on the spastic side, suggesting a disruption of orderly recruitment of MUs with increase of force level, or the MU denervation and the subsequent collateral reinnervation secondary to upper motor neuron lesions. Inter-side comparison demonstrated significant MU depth difference at 10% (p= 0.0048) and 100% force effort (p= 0.0026).Significance.This study represents the first effort to non-invasively characterize the MU distribution inside spastic and non-spastic bilateral BBM of chronic stroke patients by combining HD-sEMG recording, EMG signal decomposition and bioelectrical source imaging. The findings of this study advances our understanding regarding the neurophysiology of human muscles and the neuromuscular alterations following stroke. It may also offer important MU depth information for botulinum toxin injection in clinical post-stroke spasticity management.


Assuntos
Braço , Acidente Vascular Cerebral , Eletromiografia/métodos , Humanos , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Espasticidade Muscular , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Acidente Vascular Cerebral/complicações , Sobreviventes
18.
Clin Neurophysiol ; 142: 262-272, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902304

RESUMO

OBJECTIVE: The purpose of this study was to detect specific motor unit (MU) abnormalities in people with amyotrophic lateral sclerosis (ALS) compared to controls using high-density surface electromyography (HD-SEMG). METHODS: Sixteen people with ALS and 16 control subjects. The participants performed ramp up and sustained contractions at 30% of their maximal voluntary contraction. HD-SEMG signals were recorded in the vastus lateralis muscle and decomposed into individual MU firing behavior using a convolution blind source separation method. RESULTS: In total, 339 MUs were detected (people with ALS; n = 93, control subjects; n = 246). People with ALS showed significantly higher mean firing rate, recruitment threshold, coefficient of variation of the MU firing rate, MU firing rate at recruitment, and motoneurons excitability than those of control subjects (p < 0.001). The number of MU, MU firing rate, recruitment threshold, and MU firing rate at recruitment were significantly correlated with disease severity (p < 0.001). Multivariable analysis revealed that an increased MU firing rate at recruitment was independently associated with ALS. CONCLUSIONS: These results suggest increased excitability at recruitment, which is consistent with neurodegeneration results in a compensatory increase in MU activity. SIGNIFICANCE: Abnormal MU firing behavior provides an important physiological index for understanding the pathophysiology of ALS.


Assuntos
Esclerose Amiotrófica Lateral , Recrutamento Neurofisiológico , Potenciais de Ação/fisiologia , Esclerose Amiotrófica Lateral/diagnóstico , Eletromiografia/métodos , Humanos , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético , Recrutamento Neurofisiológico/fisiologia
19.
Neuroscience ; 496: 141-151, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710065

RESUMO

Acute pain alters motor unit discharge properties in muscles that are painful or influence loading of painful structures. Less is known about the changes in discharge when pain is induced in distant tissues that are unable or have limited capacity to modify the load of the contracting muscle. We aimed to determine whether acute experimental pain alters quadriceps motor unit discharge when pain is induced in; (i) a muscle that is unlikely to be mechanically influenced by modified quadriceps activity (tibialis anterior: TA), or (ii) the antagonist muscle (biceps femoris: BF). Using a within-subject design, 16 adults performed force-matched isometric knee extension during pain-free control conditions, and trials after painful hypertonic saline injections into TA or BF. Surface and intramuscular electromyography recordings were made. Despite maintained force, discharge rate of quadriceps motor units was lower during Pain than Control conditions for TA and BF trials (both P < 0.001). Redistribution of motor unit activity was observed; some units were recruited in control or pain but not both. As modified quadriceps motor unit discharge has limited/no potential to modify load in the painful tissue to protect the painful part, the findings might support an alternative hypothesis that activity is redistributed to larger motor units.


Assuntos
Dor Aguda , Recrutamento Neurofisiológico , Adulto , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia
20.
J Electromyogr Kinesiol ; 65: 102675, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728511

RESUMO

Sex-related disparities in force production of humans have been widely observed. Previous literature has attributed differences in peripheral traits, such as muscle size, to explain these disparities. However, less is known about potential sex-related differences in central neuromuscular traits and many comparable studies, not exploring sex-related differences, exhibit a selection-bias in the recruitment of subjects making the generalization of their findings difficult. Utilizing high-density electromyography arrays and motor unit (MU) decomposition, the aim of the current study is to compare MU yield and discharge properties of the tibialis anterior between male and female humans. Twenty-four subjects (10 females) performed two submaximal (20%) isometric dorsiflexion contractions. On average, males yielded nearly twice the amount of MUs as females. Further, females had significantly higher MU discharge rate, lower MU action potential amplitude, and lower MU action potential frequency content than males despite similar levels of torque and MU discharge variability. These findings suggest differences in central neuromuscular control of force production between sexes; however, it is unclear how lower yield counts affect the accuracy of these results.


Assuntos
Músculo Esquelético , Caracteres Sexuais , Potenciais de Ação/fisiologia , Eletromiografia/métodos , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...